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Abstract. We consider classically chaotic systems with the topology of a ring threaded by 
quantum flux 4. Using semiclassical asymptotics. we calculate the Rwaveraged autocorrelation 
function C(4)  of slopes of the energy levels (persistent currents), normalized by the mean level 
spacing, for flux values differing by 4. Our result furnishes the uniform approximation 

Here w * ,  the RMS winding number of the classical periodic orbits whose period is connected by 
Heisenberg's relation to the mean level spacing, is a (large) semiclassical parameter, of order 
l / l i (D-'@ for a system with D freedoms. 

1. Introduction 

Consider a charged quantum particle confined by a scalar potential to move in a ring threaded 
by quantum (Aharonov-Bohm) flux @ (= @ / e )  x flux). Then the energy levels E. depend 
on 4, and the normalized derivatives 

where 2 is the mean level density (reciprocal of the mean level spacing), determine persistent 
currents, which are of particular interest in mesoscopic systems where the ring contains 
disorder in the form of many elastic scatterers. Szafer and Altshuler (1993) have introduced 
the autocorrelation function 

Here the averages are over a flux period 0 < @O < 1 and levels n lying in an energy 
range AE which is classically small but quantally large (in the sense that it includes 
many levels). They speculate that this function 'offers a possibly universal quantum 
mechanical characterization of chaotic systems', independent of whether the chaos originates 
in mesoscopic disorder or deterministic instability of the classical trajectories. To support 
this view they note the agreement between an analytical calculation for @ not too small, 
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based on averaging over mesoscopic disorder, and numerical calculations on classically 
chaotic ring-shaped billiards. 

Our purpose here is to advance this argument with an analytical calculation of C ( @ )  
over the whole range of @, based on semiclassical asymptotics using the sum over periodic 
classical orbits of Gutzwiller (1971, 1990). Universality arises because the relevant sum 
are dominated by long orbits; this also occurs for other spectral statistics, and has led to 
the development of special techniques (Hannay and Ozorio de Almeida 1984, Berry 1985, 
1991) which we shall also employ here. We consider the ballistic regime, where the mean 
free path for scattering is of the same order as the size of the ring; for example the ring 
could be a hollow ‘billiard’, the simplest planar case being a circular hole in a square box 
(Sinai’s billiard). Therefore we cannot compare our results with the semiclassical theory 
developed for mesoscopic systems by Argaman et al (1993a), because they make essential 
use of the assumption that the classical motion is diffusive (mean free path much smaller 
than the ring); moreover, they calculate not the function C(@) but the grand canonical 
average of C(0). 

Related semiclassical arguments have been applied by Serota (1992) to calculate the 
total magnetic moment of an Aharonov-Bohm billiard. 
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2. Autocorrelation in terms of the spectral staircase 

Consider the smoothed spectral staircase (eigenvalue counting function) 

W E , @ )  = C O , ( E - E n ( @ ) ) .  (3) 

Here 0, denotes the unit step, and the energy smoothing E is smaller than the mean level 
spacing. The energy derivative of this staircase is the smoothed spectral density 

whose energy or flux average is the mean level density j ( E ) ,  which we henceforth denote 
simply by 2. 

We will argue that the desired autocorrelation function C(@) is semiclassically equal to 
an apparently very different quantity defined in terms of N c ,  This is 

where the average is over flux @ and the same energy range A E  as in (2), and E takes a 
particular value, soon to be fixed, which depends on the kind of smoothing. Using (3) we 
obtain 

(6) 

We choose to employ Lorentzian smoothing, for which the step is  defined in terms of the 
smoothed delta function by 

d 1 1 E 

dx r x+iE r ( x z  + E z )  
& ( x )  = - 0 , ( x )  --Im- = (7) 
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and remark that we have also carried through the subsequent calculations with Gaussian 
smoothing and obtained the same final result (see (37)) for C(+). 

We relate F to C by a two-step argument. First, consider 4 sufficiently large that the 
two delta functions in (6) are uncorrelated. Then we can replace each of their sums by 2. 
This gives 

where the average is over pairs of states in the range AE. As in Szafer and Altshuler 
(1993), we neglect the off-diagonal terms (n  # m ) ,  arguing that for different states m and 
n the energy slopes will be only weakly correlated and their product will average to zero 
or will be semiclassically small. Thus, for sufficiently large $, F c C, independently of E .  

The second step is to consider 4 = 0. For a non-degenerate spectrum, again only the 
.diagonal (n = m) terms contribute to F .  This allows us to use the result, which follows 
from (7), that 

for E << 2-l. Thus 

The energy average enables the sum over delta functions to be replaced by d, giving 

where the n-average is over states in the range A E .  Comparison with (2) now shows that 

C(0) = F O , E  = - ( 2 i d )  

Taken together with the result for large q5, this strongly suggests that the choice 

1 
2nd 

E = - - - :  (14) 

in F provides a uniform approximation to C over the whole range of 4. We henceforth 
assume this (noting in passing that it will ultimately emerge that the limiting forms of C, as 
given by (38) and (39), are actually independent of E ) ,  and now proceed to the semiclassical 
evaluation of F ( 4 ,  E )  from the definition (5 ) .  
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3. Semiclassical theory 

For the staircase in (5) we employ the energy integral of Gutzwiller’s formula for the 
spectral density. This involves the stabilities and actions of the classical periodic orbits at 
the energy E considered. Since the particles are shielded from the flux, this has no effect 
on the Newtonian trajectories, but does change the phase of the semiclassical contributions; 
of course, this is just the Aharonov-Bohm effect. If S is the action of a periodic orbit, the 
phase is changed as follows: 

M V B e r v  and J P Keating 

s s  
- + -+2irw@ 
A h  

where w is the number of times the orbit winds around the flux line. The effect of the 
Lorentzian smoothing (7) is to replace E by E + is. Thus, labelling closed orbits by j ,  we 
have 

Here the sum is over both positive and negative traversals, fi is the mean (‘Weyl’) staircase, 
which, to leading asymptotic order, is independent of flux, I;. is the period of the orbit, and 

where M j  denotes the linearized Poincark return map of the orbit, and pj the Maslov phase. 
Equation (5) involves bilinear staircase products and so contains double sums over 

periodic orbits. Flux averaging eliminates all pairs of orbits except those with the same 
winding number. Thus 

x exp [ i (s,-sX + 2 i r w j ~ )  ] aw,.,k) . 
h E 

We separate the diagonal and off-diagonal contributions, and write 

F(@, 6 )  = Fdiug(@. 6) + Foff(@, E). 

In section 5 we shall show that  fa^ is negligible. 
For the diagonal contribution we have 

Note that there is not the customary factor 2 from the coherent interference of each orbit with 
its geometrically identical time-reverse, which might be though to contribute here because 
the Newtonian trajectories possess time-reversal symmetry, and which is a principal source 
of the difference between statistics of the Gaussian unitary ensemble (Om) and Gaussian 
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orthogonal ensemble in random-matrix theory. ‘Ihe reason for its non-appearance here is that 
although the orbit and its time-reverse have the same actions, they have opposite winding 
numbers, so the contribution of the pair vmishes in the average over 8ux (cf the Kronecker 
delta in (IS)), reflecting the fact that for non-zero flux the quantum (and semiclassical) 
dynamics lacks time-reversal symmetry. 

To evaluate the sum (20), we order the orbits by their period I;. Orbits proliferate 
exponentially, but the contributions IBj1’ are exponentially damped. The near-balancing of 
these effects is the essence of the classical sum rule of Hannay and Ozorio de Almeida 
(1984), and enables us to make the replacement 

(A quick way to see the truth of this result is to anticipate that in ow application the 
integrand will be even, and note that the density of the distribution of periods over long orbits 
is exp(ilTl}/lTfl, while the amplitudes (17) have the asymptotic form exp{-ilTl/2}/2rr, 
where i is the entropy of the classical motion.) The lower limit of zero is appropriate if 
the resulting integral converges, as it will. 

4. Winding number average 

Before making use of (21) to convert the sum (20) into an integral, we note that the winding 
numbers of the orbits in any small range of period will be irregularly distributed. Their 
distribution will be symmetric about zero, and it is natural to approximate it as Gaussian 
(see Berry and Robnik 1986, especially the appendix), 

with a variance increasing linearly with T, i.e. 
aT 
To 

(wZ(T)) = - 

where To is the period of the shortest orbit, and a is a system-dependent dimensionless 
constant. (In writing (22) we have ignored a normalization constant differing from unity by 
O(e~p{-2z~(w’(T)))), which is negligible in the following.) 

The average in the diagonal contribution (20) can be evaluated by the Poisson sum 
formula: 

2 P(w)w’cos (~wg)  
w=-m 

m 

= (w’(~))[l - 4nZ(g - n)2wz(r)lexp{-2n2(~ - n)’w2(r)). (24) 
n=-m 

Thus on using (20) and (21) Fdx becomes 
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The integral is elementary, and gives 
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1 ( $ - f l y -  1/7?w: 
372 n=--m [(4 - n)Z + 1/irzw:1z 

Fdiag(4. E )  = -- 

where 

w, = 

A second application of Poisson summation now leads to 

Fdi;lg($, 6) = -4exp -- . (28) 

When w( >> 1 (as it will be in the following), this can, as illustrated in figure 1, be replaced 
by the approximation 

2 2(1+ exp(-4/w,)) sin'(n4) - (1 - exp{-~/w,))~ I w J  [4 sin2(n#) exp(-~/w,] + (1  - exp{-2/w,])2]2 

.i 

= -0.01 -o.015 75 t v a 

Figure 1. Difference between Ule right-hand sides of (28) and (29). n o d i r e d  by w:. for (a)  
we = 5 ,  (b)  w( = 10 and (c)  we = 20. 

For the autocorrelation we require F for the value of E given by (14). The corresponding 
winding number is 

This quantity w' has physical significance: it is the typical winding number of the orbits 
whose period T" = 2 n h 2  is related by Heisenberg's principle to the mean level spacing (T' 
plays an important role in the theory of spectral statistics). In a system with D freedoms 
(D > Z), the mean spacing is of order R D ,  so that w* is of order I/h(D-')'2 and therefore 
semiclassically large. 
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5. Estimate of Fow(+, a) 

Assuming no correlations between the winding numbers of different orbits, the winding 
number average in the off-diagonal part of (18) is (cf (22) and (24)) 

p(w1)p(w2)wI w2 exp1i2nwl416,, = C p2(w)w2  e x p ~ n w l 4 1  
UJI w? UJ 

(here we have assumed 0 < 4 c 4 and neglected some exponentially small terms). Thus 
we obtain 

This can be expressed as an integral of the off-diagonal part of the spectral farm factor, 
whose semiclassical expression (Berry 1985, 1991) is 

The formula is 

(which is equivalent to the result of substituting the action correlation function of Argaman 
et al (1993b) directly into (32)). 

For Koa we assume GUE statistics for the close correlations of the energy levels and 
employ the sum rule of Hannay and Ozorio de Almeida (1984) as in Berry (1985). that is, 

(35) 

The lower limit of the integral (34) is now unity, and F,a can be estimated by replacing 
r3I2 by unity. The result, written for the value of E given by (14), is 

KO&) = (1 - S)@(S - 1). 

where w* is the winding number (30). Calculations (illustrated in figure 2) show that this 
function is negligible compared with Fdag (given by (29) with w, = w*) over the whole 
range of 4. 



6114 M V Berry and J P Keating 

Figure 2. Off-diagonal contribution Foa(#. 6 = I/Znd) (see (36)), normalized by w " ~ ,  for (=) 
w* = 5.  (b) w' = IO and (c )  w' = 20, 

6. Flux autocorrelation formula 

From the arguments of section 2 showing that the desired function C(@), defined by (2), 
can be identified with the staircase correlation F(+ ,6  = I/Znd), and the calculations of 
sections 4 and 5 showing that F is semiclassically dominated by its diagonal part (29). we 
obtain, for the flux correlation of the persistent currents, 

Here the large semiclassical parameter w* (of order 1/hcD-')'*) is the winding number (30). 
This remarkably simple formula is our main result. Curves of C(4) for several values of 
w* are shown in figure 3. (For values of the parameters such that ut* cannot be considered 
large, the full semiclassical approximation (28) should be used.) 

c b  a 
Figure 3. Persistent current flux correlations (see (37)), normalized by w", for (a )  w* = 5, (6) 
w * =  10 and ( c )  w' = 20. 
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The periodic function C(@) is large and positive for very small 4, and has the limiting 
value 

This accords with the elementary estimate obtained by considering E.(@) to fluctuate over 
approximately a mean level spacing l / d  in a @ range of l/w*, which according to the 
Gutzwiller formula (16) generates the spectral oscillations on the smallest energy scales. 

The autocorrelation rapidly decreases, and falls through zero as @ increases through the 
small value l/(rrw*). Thereafter @ is negative. It passes through a minimum which for 
large w* is at &/(nw*) and has a value -w*'/8. For larger @ we reach the universal 
asymptotic form 

This is identical with the result obtained by Szafer and Altshuler (1993) for mesoscopic 
systems. 

Finally, it is worth noting that the limiting forms (38) and (39) are actually independent 
of the choice (14) for E ,  provided E < d-I. In the second case (q5 >> l/nw*) this is 
immediately apparent since the corresponding limit of (29) is independent of tuG. Essentially, 
it is due to the fact that the second term in the exponential in (25) dominates the convergence 
of the integral when @ is sufficiently large. In the first case, when q5 = 0, it would appear 
on first sight that the value of C should depend on (14), because it is related to w'. That 
in fact it does not follows from the expression 

~ ( 0 )  = 2nd lim E F @ .  E )  (40) 
6-0 

which is a consequence of (1 I). Hence, from (Z), 

The limit is clearly independent of E and leads again to (38), as it must to maintain 
consistency with the derivation of (40) from ( l l t a  derivation which is itself independent 
of 6 provided E << a-', because of (9). Hence the choice (14) could affect only the form 
of the interpolation between the limits (38) and (39). 
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